Роль социальных сетей в жизни каждого из нас растёт. Новостная лента связывает нас со знакомыми, информирует о событиях, развлекает и учит чему-то новому. Так и поиск работы в мобильном приложении VK стал обычным делом для сотен тысяч и миллионов людей.
SMM-команда Бета Онлайн выстраивает органичные и экономически эффективные коммуникации с соискателями для крупнейших работодателей страны, используя соцсети как один из основных источников трафика в проектах кадровой лидогенерации. При расчете количества и стоимости лидов важна точность прогнозирования, т.к. от грамотного медиаплана зависит эффективность рекламы, а при его отсутствии даже сильный креатив, основанный на опыте и одобрении фокус-групп, окажется бесполезным. Мы поставили перед собой цель оптимизации процессов аналитики и медиапланирования. О них и поговорим сегодня.
Как мы построили и внедрили систему медиапланирования:
- решили задачу прогнозирования трафика на основе охвата, CR, QR, CTR, средних и расчетных значений,
- сократили время расчета медиаплана,
- создали базу аналитики по проектам,
- разработали и сегментировали базу пабликов.
Медиаплан для закупки рекламы начинается с анализа сообществ на предмет стоимости размещения, количества подписчиков, качества и охвата аудитории. Но как научиться системно планировать окупаемость инвестиций в масштабе региона, города или района? Давайте разбираться.
Базовые понятия, которые нам понадобятся
- Базовый лид — все полученные анкеты.
- Релевантный лид — анкеты, отфильтрованные по квалификации (опыт, наличие определенных навыков), соц-дем (пол, возраст, гражданство).
- Конверсия — процентное отношение числа посетителей сайта, выполнивших целевое действие, к общему числу посетителей.
- CR или Conversion Rate — конверсия из сессий (действий, совершенных посетителем на сайте) в базовый лид.
- QR или Quality Rate — конверсия из базового в релевантный лид с учётом гражданства, возраста, опыта, гео и других критериев.
- CPLr — стоимость релевантного лида.
- CPC — Cost Per Click — стоимость / цена за клик на ссылку в рекламной публикации.
- ER — уровень вовлеченности аудитории, измеряемый в процентном соотношении действий к охвату.
- CTR — процентное отношение пользовательских действий к общему рекламному охвату

Для наших расчётов мы разработали базу пабликов и базу аналитики по проектам. Далее расскажем подробно о каждой.
База аналитики по проектам
Чтобы прогноз по лидам был реалистичным, он должен основываться на статистике за предыдущий период, если таковая есть. Мы ведем базу аналитики по проектам, в которой можно оперативно посмотреть:
Месяц / Канал / Бюджет / Посетители / Количество базовых и релевантных лидов
CPC / CR / QR / CPLr / Гео

Из базы аналитики вручную переносим в медиаплан:
- CR — исходя из результатов проектов с похожими вакансиями и гео;
- QR — с учётом критериев релевантности: гео, гражданства, возраста, опыта и других.
База пабликов
В работе мы также используем базу пабликов — это база данных в Google BigQuery, которая предоставляется специалисту в виде Google-таблицы. Здесь есть список сообществ, который можно отфильтровать по нужным параметрам: по региону, городам, цене, количеству подписчиков, ER. Данные получаем через VK API.
Новые паблики добавляются в базу вручную, сразу после первого взаимодействия.
На сегодня база содержит 7 264 площадки: группы для поиска работы, городские и районные сообщества, а также группы на профессиональные темы.
Самое интересное кроется в столбце «Средний охват».
Средний охват записей в группе строится на выборке первых 100 постов с изображением, опубликованных за определенный период. Из выборки должны быть исключены выбросы, поскольку они искажают статистику.
Выбросы — это значения, которые резко отличаются от остальных данных в выборке. Примером может быть конкурс репостов, набравший аномальное количество просмотров / лайков / комментариев / репостов.
При выборе необходимой группы в медиаплане данные из базы подтягиваются автоматически.
Медиаплан
В нашем случае медиаплан — это файл, сформированный в Google-таблицах, т.к. в режиме онлайн сюда автоматически подтягиваются данные по выбранным площадкам из базы пабликов.
CR и QR переносим в таблицу вручную из базы аналитики. На основе этих данных и количества планируемых публикаций автоматически рассчитывается количество и стоимость базовых и релевантных лидов.
CTR рассчитывается на основе исторических данных, заложенных в базе статистики. База содержит просмотры и переходы по размещенным публикациям. В итоге полученное значение рассматриваем как среднее в расчетах.
Клики считаются по формуле:
средний охват паблика x количество планируемых публикаций x CTR
Таким образом лишь треть медиаплана заполняется вручную. Бóльшая часть формируется автоматически, что экономит главный ресурс — время.
Чтобы убедиться в этом, взглянем на таблицу ниже. Здесь столбцы, которые заполняет специалист, выделены зелёным, а бежевым — столбцы с данными, которые подтягиваются из базы пабликов и считаются по формулам.
Заранее зная стоимость лида с каждой площадки, корректируем медиаплан: убираем дорогостоящие группы, и добавляем те, которые дадут результат в рамках KPI.
Для прогнозирования лидов в нескольких регионах одновременно в медиаплане реализована сводная таблица:

Заключение
Систематизировав процесс анализа площадок, мы научились прогнозировать лиды из соцсетей, вдвое сократили затраты времени и на треть повысили точность расчетов. Благодаря таким базам пабликов и аналитики по проектам, а также их своевременному обновлению, прогноз формируется почти автоматически, что намного удобнее для специалиста.
Как следствие, мы имеем больше ресурсов для работы над проектами, не расширяя штат сотрудников.
Lead SMM Manager | Максим Козлов
Департамент кадровой лидогенерации
Позвоните +7 (495) 995-91-01
или закажите обратный звонок